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Abstract - A common task for a Bayesian network is to perform 
inference by computing to determine various probabilities of 
interest from the model. We are using an algorithm for 
construction of Bayesian network from given data input from 
several data sources such as Oracle, Access,  Excel, etc., and 
variable elimination algorithm for answering probabilistic 
queries with respect to a Bayesian network. Our algorithm 
makes use of XML Bayesian Interchange Format to support 
portability of constructed network within modules of program. 
The algorithm runs in time and space exponential in the tree 
width of the network.  The variable elimination algorithm acts 
on a set of factors. Each factor involves a set of variables and 
each node in a Bayesian network is equipped with a conditional 
probability function that expresses the likelihood that the node 
will take on different values given the values of its parents. The 
initial sets of factors are the network’s conditional probability 
distributions (tables). The probability distributions constructed 
during variable elimination in Bayesian networks have always 
been denoted as probability. 
Index Terms - Bayesian network construction; Inference; XML 
BIF; Conditional probability query; Decision making 
 

INTRODUCTION 
Bayesian networks are graphical models whose nodes 
represent random variables and whose edges represent 
conditional dependence between variables.  A Bayesian 
network consists of a directed acyclic graph and a 
corresponding set of CPTs (Conditional Probability Tables). 
Based on the conditional independencies holding in the 
directed acyclic graph, the product of the CPTs is a discrete 
joint probability distribution. 
For example, a Bayesian network could represent the 
probabilistic relationships between diseases and symptoms. 
Given symptoms, the network can be used to compute the 
probabilities of the presence of various diseases. 
BAYES’ THEOREM 
Given two events E and F such that P (E) ≠ 0 and P (F) ≠ 0, 
then Bayes theorem is  

P(E|F) =
P (F|E)P(E)

P(F)  

Given n mutually exclusive and exhaustive events E1, E2… 
En such that P (Ei) ≠ 0 for all i, and for     1 ≤ i ≤ n, 
P(Ei│F) =   (P(F│Ei )P(Ei ))/ (P(F│E1 )P(E1 )

+ P(F│E2 )P(E2 ) + ⋯
+ P(F│En )P(En ) ) 

Let X and Y be random variables with possible values x and 
y, Then the joint probability distribution of X and Y is P(X = 
x, Y = y) 
Let X and Y be discrete random variables with possible 
values x and y, and a joint probability distribution P(X = x, Y 
= y). Then 

P (X = x) =  �P (X = x, Y = y)
y

 

Let A, B, and C is sets of random variables defined on the 
same probability space. Then sets A and B are said to be 
conditionally independent given the set C if, for all values of 
the variables in the sets a, b, and c, whenever P(c) ≠ 0, the 
events A = a and B = b are conditionally independent given 
the event C = c. That is, either P(a|c) = 0, or P(b|c) =0 , or 
P(a|b,c) = P(a|c) 
MUTUAL INFORMATION 
Mutual information is nothing but information flow between 
two nodes. In information theory, the mutual information of 
two nodes Xi, Xj is defined as 

I�Xi, Xj� =  � P�xi, xj�lo
xi,xj

g
P�xi, xj�

P(xi)P�xj�
 

and conditional mutual information is defined as 

I�Xi, Xj�C� =  � P�xi, xj, c� log
P�xi, xj�c�

P(xi|c)P�xj�c�xi,xj,c

 

This equation can be modified as 
I�Xi, Xj� = �P(xi)p�xj�xi�log (p(xj / xi)/p(xj)) 

Where Xi and X j are two nodes and C is a set of nodes 
BAYESIAN INFERENCE 
Inference on Bayesian network computes the marginal 
probability P (V = v) for each node V and each possible 
instantiation v. Inference gives an idea of how likely cases for 
a specific random variable by using the information in the 
Bayesian network. Inference can also be done on a Bayesian 
network when the values of some nodes (evidence) are known 
and wish to compute the likelihood of values of other nodes. 
This is computation of posterior probabilities, since it finds P 
(V = v|e) for each node V and each possible instantiation v, 
given the evidence value e.  
Graphical models allow the representation of large domain 
probabilistic models by encoding their qualitative properties. 
Several methods for exact and appropriate inference to suit 
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different kinds of graphical models have been developed. 
This paper deals with only exact inference after construction 
of Bayesian belief network from given data source. 
EXACT INFERENCE 
The inference refers to the task of calculating the likelihood 
of some evidence e, P (e), as well as the task of calculating 
the marginal distribution (P (V = v)) or posterior probabilities 
for given initiation variable v, (P (V = v|e)) for each 
instantiation v of each node V, possible given some evidence 
e of other node values. 

 
ARCHITECTURE 

The proposed implementation consists of two modules – 
Bayesian network construction algorithm and Inference 
algorithm.  Following diagram shows the architecture of the 
system. 

 

 
Figure 1: Architecture Diagram 

 
Bayesian network construction algorithm is capable of 
accepting given input from different data sources such as MS 
Access, MS Excel, Oracle, etc., and computes mutual 
information among variables and prepares nodes and 
conditional probability table. Once the algorithm finishes, the 
result can be saved as XML Bayesian Interchange Format. 
Bayesian Inference algorithm accepts Bayesian network data 
generated in Bayesian network construction algorithm in the 
form of XML Bayesian Interchange Format, initiation 
variable I1 and computes the posterior belief P (I1 | e) for any 
given ordering of the variables which is initiated by I1 
 

BAYESIAN NETWORK CONSTRUCTION ALGORITHM 
DESCRIPTION 

A Bayesian belief network for reliability prediction and 
management was constructed using this algorithm [8]

In the first phase, this algorithm computes mutual information 
of each pair of nodes as a measure of closeness, and creates a 
draft based on this information. In the second phase, the 

algorithm adds arcs when the pairs of nodes cannot be d-
separated. The result of Phase II is an independence map (I-
map) of the underlying dependency model. In the third phase, 
each arc of the I-map is examined using CI tests and will be 
removed if the two nodes of the arc can be d-separated. The 
result of Phase III is the minimal I-map. 

. The 
validation of model’s problem structure and behavior is a 
continuous process till the end of the construction process is 
completed. This algorithm has three phases:  drafting, 
thickening and thinning. 

 
THE ALGORITHM 

Input Ms-Access, Excel and text file formats data  
Output Generates belief network and can be exported to 
Bayesian Interchange Format 

PHASE I: (DRAFTING) 
1. Initiate a graph G (V, E) where V= {all the nodes of a 

data set}, E= { }. Initiate two empty ordered set S, R. 
2. For each pair of nodes (vi,vj) where vi,vj 

3. Get the first two pairs of nodes in S and remove them 
from S. Add the corresponding arcs to E. 

ε V, compute 
mutual information using equation. For the pairs of nodes 
that have mutual information greater than a certain small 
value e, sort them by their mutual information from large 
to small and put them into an ordered set S. 

4. Get the first pair of nodes remained in S and removes it 
from S. If there is no open path between the two nodes, 
add the corresponding arc to E; otherwise, add the pair of 
nodes to the end of an ordered set R. 

5. Repeat step 4 until S is empty. 
PHASE II: (THICKENING) 
1. Get the first pair of nodes in R and remove it from R. 
2. Find a block set that blocks each open path between these 

two nodes by a set of minimum number of nodes.(This 
procedure identify_block_set (current graph, node1, 
node2) is given at the end of this subsection.)  

3. Conduct a CI test. If these two nodes are still dependent 
on each other given the block set, connect them by an 
arc. 

4. Go to step 1 until R is empty. 
PHASE III:  (THINNING) 
1. For each arc in E, if there are open paths between the two 

nodes besides this arc remove this arc from E temporarily 
and call procedure identify_block_set (current graph, 
node1, node2).  

2. Conduct a CI test on the condition of the block set. 
If the two nodes are dependent, add this arc back to E; 
otherwise remove the arc permanently. 
 
INFERENCE ALGORITHM DESCRIPTION 
Inference in BBNs represents the stage in which the networks 
are used for supporting decision making. Scenario analysis 
through BBNs may be used for decision support in generic 
way as follows 
1. The outcome (value of the leaf/child node) can be 

calculated as a result of different inputs to the model  
(values of the parent/root nodes) 

2. The likelihood of the input (values of the parent/root 
nodes) that corresponds to a certain outcome (value of 
the child/leaf node) can be calculated 

3. Both ways of decision support can be combined. 
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A situation can be characterized in terms of the inputs 
(pre-defined values of input variables). In the other direction, 
the most likely values of inputs that correspond to particular 
outcomes can be calculated. 
THE ALGORITHM 
Input   A belief network BN = {P1,…, Pn}  an ordering of 

the variables d, Initiated variable e 
Output  Belief P (I1

I. INITIALIZE 
 | e) network for all possible queries 

1. Generate an ordered partition of the conditional 
probability matrices, P1… Pn, where Pi

2. Put each observed variable in its bucket.  

 contains all 
matrices whose highest variable is Xi.  

3. Let S1… Sj

II. FORWARD PASS 

 be the subset of variables in the processed 
bucket on which matrices are defined. 

The most probable value is obtained by the product in P1. 
Most probable explanation is obtained by assigning values in 
the ordering d consulting recorded functions in each P as 
follows 
1. Given the assignment x =(x1, … , xi-1

2. Choose  𝑥𝑖 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖 ∏ ℎ𝑗�ℎ𝑗 ∉ 𝑝𝑖 �𝑥=(𝑥1,…𝑥𝑖−1)}  

)  choose 
𝑥𝑖 = 𝑥𝑖0(𝑥)(𝑥𝑖0 𝑖𝑠 𝑖𝑛 𝑃𝑖)  or 

III. BACKWARD PASS 
1. For p = n down to 1 
2. Do 
3.      for all the matrices h1,h2, … , hj in Pp
4.          If (observed variable) P

, do 
p contains Xp= xp

     assign X
,  

p = xp to each hi
          each in appropriate bucket 

 and put  

5.                else, 
                 ⋃ =  ⋃ 𝑆𝑖 − �𝑋𝑝�

𝑗
𝑖=1𝑝  

6.     Generate functions 
 ℎ𝑝 =  𝑚𝑎𝑥𝑥𝑝  ∏ ℎ𝑖

𝑗
𝑖=1  𝑎𝑛𝑑  

 𝑋𝑝0 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑝ℎ𝑝 
7. Add hp to bucket of largest-index variable in ⋃  𝑝 . 
8. Done 
 

EXISTING METHODS 
Application of BBNs on a larger scale has been strongly 
dependent on the availability of efficient algorithms and the 
availability of computing power. For example, in problems 
concerning with monitoring and detection systems such as 
credit card fraud detection [1] [9], energy theft detection, 
medical diagnostic systems, Email spam filters, etc., we need 
to know the probability of given observations of the other 
variables. This probability is not stored directly in the model, 
and hence needs to be computed. The computation of a 
probability of interest given a model is known as probabilistic 
inference [3]

Two common exact inference algorithms available are – 
Pearl’s algorithm 

.  

[2] [10] [11] and the Lauritzen - Spiegelhalter 
algorithm [2] [10] [11].  While all existing exact inference 
algorithms for general Bayesian networks do have 

exponential running times, inference can be performed in 
linear time on a polytree using Pearl’s algorithm [2][10][11]

We are using Variable Elimination 

. 
Thus if a network could be approximated by a polytree, 
inference could be performed very quickly and this will not 
work for all the cases 

[7]

 

 algorithm as it 
generalizes dynamic programming to accommodate 
algorithms for many complex problem solving and reasoning 
activities, including adaptive consistency for constraint 
satisfaction, Fourier and Gaussian elimination for linear 
equalities and inequalities, and dynamic programming for 
combinatorial optimization. 

RESULTS AND DISCUSSION 
In this paper, we combined Bayesian network construction 
using three phases Bayesian network construction algorithm 
and then used another algorithm for variable elimination, 
compilation, and structured representations of factors. For a 
directed graphical model, we can use this factored 
representation of the JPD to do marginalization efficiently. 
The key idea is to push sums as far as possible when 
marginalizing out irrelevant terms. The principle of 
distributing sums over products can be generalized greatly to 
apply to any type of decision making problems. The amount 
of work we perform when computing a marginal is bounded 
by the size of the largest term that is encountered. The 
following figures shows the output of Bayesian network 
constructed by using three phase algorithm and resultant 
Bayesian network after applying variable elimination 
algorithm. 

 
Figure 2: Input Bayesian network (DAG) with 9 nodes 

 

 
Figure 3: Result Bayesian Net for inferring the likehood 

Siva Rama Krishna Prasad Jaladi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5227-5230

5229



The complexity of the Variable elimination algorithm 
depends on time and space required to process and it is time 
and space is exponential in number of variables. We chose 
this variable elimination algorithm to minimize this to NP-
hard. 

 
CONCLUSION 

The basic task for probabilistic inference system is to 
compute the posterior probability distribution for a set of 
query variables, given some observed event. During the 
algorithm, two factor operations are performed many times: 
factors are multiplied and a variable is summed out of a 
factor. These factor operations reduce the task of performing 
many multiplication and addition operations on real–numbers.  
Given a function f (X) in factored form, and some 
corresponding query, the method will eliminate a variable X 
from this function to produce another function f (X − Xi), 
while ensuring that the new function is as good as the old 
function as far as answering the query of interest. The idea is 
then to keep eliminating variables one at a time, until we can 
extract the answer we want from the result. The key idea is 
that when eliminating a variable, we will only need to 
multiply factors that mention the eliminated variable. 
 

REFERENCES 
[1] Efstathios Kirkos, Charalambos Spathis, Yannis Manolopoulos,  Data 

Mining techniques for the detection of fraudulent financial statements , 
Elsevier Expert systems with applications 32 (2007) 995 - 1003 

[2] Neapolitan, R.E. , Probabilistic reasoning in expert systems: theory and 
algorithms, John Wiley & Sons, 1990. 

[3] Haipeng Guo, William Hsu, A Survey of Algorithms for Real-Time 
Bayesian Network Inference, Laboratory for Knowledge Discovery in 
Databases 

[4] RONANDALY, QIANG SHEN and STUART AITKEN, Learning 
Bayesian networks: approaches and issues, The Knowledge 
Engineering Review, Vol. 26:2, 99–157. Cambridge University Press, 
2011 

[5] Stuart Russell, Peter Norvig , Artificial Intelligence, A modern 
approach Third Edition, PEARSON publications 

[6] James D. Park,Adnan Darwiche, Complexity Results and 
Approximation Strategies for MAP Explanations , Journal of Artificial 
Intelligence Research 21 (2004) 101-133 

[7] F. van Harmelen, V. Lifschitz and B. Porter, Handbook of Knowledge 
Representation, Elsevier B.V., 2008 

[8] Jie Cheng, David A. Bell, Weiru Liu , Learning Belief Networks from 
Data: An Information Theory Based Approach 

[9] Rose F. Liu, Rusmin Soetjipto, Analysis of Three Bayesian Network 
Inference Algorithms: Variable Elimination, Likelihood Weighting, and 
Gibbs Sampling 

[10] David Heckerman, A Tutorial on Learning With Bayesian Networks, 
Technical Report, Microsoft Research, March 1995 (Revised November 
1996) 

[11] V.Dheepa , Dr. R.Dhanapal , A short paper on Analysis of Credit Card 
Fraud Detection Methods, International Journal of Recent Trends in 
Engineering, Vol 2, No. 3, November 2009 

[12]  Pearl, J., 2000. Causality: models, reasoning and inference. Cambridge 
University Press 

[13] Denver Dash, Marek J. Druzdzel, Robust Independence Testing for 
Constraint-Based Learning of Causal Structure, In Proceedings of the 
Nineteenth Annual Conference on Uncertainty in Artificial Intelligence 
(UAI-03), pages 167-174, Morgan Kaufmann Publishers, Inc., San 
Francisco, CA, 2003 

[14] Pearl, J. : Probabilistic reasoning in intelligent systems – Networks of 
plausible inference, Morgan – Kaufmann 1988 

Siva Rama Krishna Prasad Jaladi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5227-5230

5230




